Wind Integrated Thermal Unit Commitment Solution Using Grey Wolf Optimizer
نویسندگان
چکیده
منابع مشابه
Wind Integrated Thermal Unit Commitment Solution using Grey Wolf Optimizer
Received Dec 24, 2016 Revised Apr 26, 2017 Accepted Jun 14, 2017 The augment of ecological shield and the progressive exhaustion of traditional fossil energy sources have increased the interests in integrating renewable energy sources into existing power system. Wind power is becoming worldwide a significant component of the power generation portfolio. Profuse literatures have been reported for...
متن کاملGrey Wolf Optimizer
This work proposes a new meta-heuristic called Grey Wolf Optimizer (GWO) inspired by grey wolves (Canis lupus). The GWO algorithm mimics the leadership hierarchy and hunting mechanism of grey wolves in nature. Four types of grey wolves such as alpha, beta, delta, and omega are employed for simulating the leadership hierarchy. In addition, the three main steps of hunting, searching for prey, enc...
متن کاملThermal Unit Commitment Solution Using an Improved Lagrangian Relaxation
An improved Lagrangian relaxation (LR) solution to the thermal unit commitment problem (UCP) is proposed in this paper. The algorithm is characterized by: (1) a new Matlab function to determine the optimal path of the dual problem, (2) new initialization procedure of Lagrangian multipliers, based on both unit and time interval classification, (3) a flexible adjustment of Lagrangian multipliers,...
متن کاملELMAN Neural Network with Modified Grey Wolf Optimizer for Enhanced Wind Speed Forecasting
The scope of this paper is to forecast wind speed. Wind speed, temperature, wind direction, relative humidity, precipitation of water content and air pressure are the main factors make the wind speed forecasting as a complex problem and neural network performance is mainly influenced by proper hidden layer neuron units. This paper proposes new criteria for appropriate hidden layer neuron unit’s...
متن کاملExperienced Grey Wolf Optimizer through Reinforcement Learning and Neural Networks
In this paper, a variant of Grey Wolf Optimizer (GWO) that uses reinforcement learning principles combined with neural networks to enhance the performance is proposed. The aim is to overcome, by reinforced learning, the common challenges of setting the right parameters for the algorithm. In GWO, a single parameter is used to control the exploration/exploitation rate which influences the perform...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Electrical and Computer Engineering (IJECE)
سال: 2017
ISSN: 2088-8708,2088-8708
DOI: 10.11591/ijece.v7i5.pp2309-2320